Extensions 1→N→G→Q→1 with N=C2 and Q=C23.D14

Direct product G=N×Q with N=C2 and Q=C23.D14
dρLabelID
C2×C23.D14224C2xC2^3.D14448,935


Non-split extensions G=N.Q with N=C2 and Q=C23.D14
extensionφ:Q→Aut NdρLabelID
C2.1(C23.D14) = C7⋊(C425C4)central extension (φ=1)448C2.1(C2^3.D14)448,185
C2.2(C23.D14) = Dic7⋊C4⋊C4central extension (φ=1)448C2.2(C2^3.D14)448,186
C2.3(C23.D14) = C4⋊Dic77C4central extension (φ=1)448C2.3(C2^3.D14)448,187
C2.4(C23.D14) = C14.(C4×D4)central extension (φ=1)448C2.4(C2^3.D14)448,189
C2.5(C23.D14) = C24.3D14central extension (φ=1)224C2.5(C2^3.D14)448,478
C2.6(C23.D14) = C24.4D14central extension (φ=1)224C2.6(C2^3.D14)448,479
C2.7(C23.D14) = C24.8D14central extension (φ=1)224C2.7(C2^3.D14)448,485
C2.8(C23.D14) = (C2×Dic7).Q8central stem extension (φ=1)448C2.8(C2^3.D14)448,192
C2.9(C23.D14) = (C2×C28).28D4central stem extension (φ=1)448C2.9(C2^3.D14)448,193
C2.10(C23.D14) = (C2×C4).Dic14central stem extension (φ=1)448C2.10(C2^3.D14)448,194
C2.11(C23.D14) = (C22×C4).D14central stem extension (φ=1)448C2.11(C2^3.D14)448,196
C2.12(C23.D14) = C24.6D14central stem extension (φ=1)224C2.12(C2^3.D14)448,482
C2.13(C23.D14) = C24.9D14central stem extension (φ=1)224C2.13(C2^3.D14)448,486
C2.14(C23.D14) = C24.10D14central stem extension (φ=1)224C2.14(C2^3.D14)448,487

׿
×
𝔽